sin(A+60°)-cos(B+C)=0
sin(A+60°)+cosA=0
(1/2)sinA+ (√3/2)cosA +cosA=0
sinA +(√3+2)cosA =0
tanA = -(√3+2)
sin(A+60)-cos(B+C)=sin(A+60)-cos(180-A)=sin(A+60)+cosA=sinAcos60+cosAsin60+cosA=0,所以tanA=-(sin60+1)/cos60=-(2+根3),所以A=180-arctg(2+根3).
A十π/3=B十C一π/2
所以A=π/12