已知sin(α+π⼀3)+sinα=-(4根号3)⼀5,-π⼀2<α<0,求cosα的值

2025-12-05 14:08:21
推荐回答(2个)
回答1:

sin(α+π/3)+sinα=1/2sina+√3/2cosa+sina
=3/2sina+√3/2cosa
=√3(√3/2sina+1/2cosa)
=√3sin(a+π/6)
=-4√3/5
sin(a+π/6)=-4/5 cos(a+π/6)=3/5
cosα=cos[(a+π/6)-π/6]
=cos(a+π/6)cosπ/6+sin(a+π/6)sinπ/6
=3/5*√3/2-4/5*1/2
=(3√3-4)/10

回答2:

由和差化积得sin(α+π/6)=-4/5.于是:根号3/2sinα+1/2cosα=-4/5
cos(α+π/6)=3/5 根号3/2cosα-1/2sinα=3/5
消去sinα可得:cosα=(-4+3根号3)/10