一道高数题

2025-12-05 14:44:28
推荐回答(2个)
回答1:

积分:(L)xy^2dy+y^3dx
P(x,y)=y^3,Q(x,y)=xy^2
以e表示偏导符号
eQ/ex=y^2,eP/ey=3y^2

积分:(L)xy^2dy+y^3dx
=积分:(D)(y^2-3y^2)dw(D为:x^2+y^2=2x)
=积分:(D)(-2y^2)dw
=积分:(0,2)dx积分:[根号(2x-x^2),-根号(2x-x^2)](-2y^2)dy
=积分:(0,2)-2/3[(2x-x^2)^(3/2)-(2x-x^2)^(-3/2)]dx
求出这个定积分,就是最后的结果了!

回答2:

L的方向呢?正向?负向?

设L的方向是正向,∫xy^2dy+y^3dx=∫∫(y^2-3y^2)dxdy=-2∫∫y^2dxdy=-2∫(-π/2~π/2)dθ∫(0~2cosθ) (ρsinθ)^2ρdρ
=-8∫(-π/2~π/2)(sinθ)^2(cosθ)^4dθ
=-16∫(0~π/2)(sinθ)^2(cosθ)^4dθ
=-16∫(0~π/2)[(cosθ)^4-(cosθ)^6]dθ
=-16[3/4×1/2×π/2-5/6×3/4×1/2×π/2]=-π/2